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VALVE-SPRING SURGE*

By Willy Marti

Cn account of the high-speed motion of an injection
valve there are set up oscillations in the valve spring
and these impart & greater stress to the springs than would
be the case if their inertia were neglected.

Since, for reasons of space and weight-saving, valve
springs are more highly loaded than the other machine ele-
ments, it is essential to know the actual maXximum stress
of the spring. This knowledge is obtained either by de-
termining the vibration strength of the springs after man-
ufacture or by measuring the actual spring stress as a
function of the speeds under which it is operated.

A knowledge of spring oscillatien is also useful for
the following reason. As the valve is opened the moving
mass is accelerated by the pressure of the cam and again
decelerated by the spring, the deceleration bteing assisted
by the friction of the guide. When the valve closes the
mass is first accelerated by the spring and then deceler-
ated by the cam, and in this case the friction diminishes
the accelerating action of the spring force. As a result
of the spring oscillations the force of the spring is de-
creagsed for brief intervals so that there is set up a
knocking at the bearing roller at lower speeds than would

be the case if there were no such oscillatiaens,

Under the condition of resonance the osgcillating
spring contributes to the general nocise, since the natural
frequencies of the springs commonly employed correspond to
the range of audible tones. When the digtance between the
coils is small and the amplitude of the oscillations large
the windings may come in contact with each other and dam-
age the surface, for example, of polished springs, result-
ing in a lowered vibration strength of the snrlng if it is
made of alloyed steel. :

*"Ventilfederschwingungen." Thesis submitted in partial
fulfillment of the requirements for the degree of
Ingineer in Mechanical Engineering Aeronautics, Federal
Polytechnic Institute of Zurich, 1935, pp. 1-20.
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A knowledgze of the mechanism of spring oscillation is
applicable to sther elastic vibrating columns. In the
fuel line of a Diesel injection system there occur, after
injection, pressure fluctuations similar to those in the
spring after the valve 1ift. The propagation of an elec-
trical impulse in a cable having capacity end self induc-
tion follows, as we know, the same laws and corresponds to
the same differential equation as the longitudinal waves
of an elastic column.

TESTS ON SPRING SURGE THAT HAVE ALREADY BEEN PURLISHED

Probably the simplest and clearest method of render-
ing the motion of the spring coils visible ig that given
»y W. Weibull (reference 1), He fastened a small rod run-
ning radial to the spring axis to each turn and projected
the shadows on a slit perpendicular to the rods. The
light rays thus cut out described on a rotating photo-
graphic film the motion of each turn as a function of the
time.

Fieoure 1 shows whet havpens when a weight strikes
upon the spring which is in a vertical position. The im—-
pulse 1s propagated from coil to coil with a constant
velocity and reflected a2t the ends of the springs., After
the pressure wave has traveled several times up and down
the weight is again threwn up by the svring under tension
and the spring then continues to oscillate with its natural
frequency. Stroboscopic methods were employed by Swan,
Savage (reference 2), and von Lehr (reference 3). fne ar-
bitrary coil, usually the center one, is marked and ob-
served stroboscopically. The motion of the coil is con-
trolled by the cam and the coil is illuminated for an ex-~
tremely short interval in the same angular position. The
1ift of the coil, which avpears at rest, may in this way
te read as a function of the angle and of the time., The
time-distance curve thus obtained is the resultant of
several rotations and may easily contain errors - for ex-
ample, 1f the position of resonance is nct maintained
accurstely as a result of small fluctuations 1in the speed
during the test.

Lehr describes a method wherety the center spring
coil having a small strip attached to it covers and un-
covers a slit parallel to the spring axis and is photo-
graphed on a rotating film. The time~distance curve of
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the turn then appears as .a line separating bright and

dark areas.

AUTHOR 'S TESTS

Time-distance curves of moving machine parts may be
obtained by the well-known method of using a bridge and
oscillographe A preliminary test employing this method
was made on a valve spring of a Diesel engine on a test
stand. To the center coil was soldered a spring steel
tongue which slid along a nickel-chromium wire (fig. 2).
The bridge current is proportional to the distance moved
by the coil, provided the variation in the resistance is
small compared to the resistance R. As may be seen by
comparing an oscillogram (fig. 3) with those obtained lat-
er, the spring surge dies down very rapidly. This is due
to the damping action of the strong pressure between the
bridge wire and the sliding contact. A decrease in this
pressure produces an unsteady fluctuation of the contact
resistance and results in a deformation of the curves so
that they are hardly recognizable. For this reason reso-—
nance phenomena could not be recorded although these ap-—
peared when there was no contact friction. There were
nevertheless revealed sneed ranges within which the ampli-
tudes were large and others with smaller amplitudes.

In arder to be able to continue the tests in the lab-
oratory an anparatus was constructed of the form shown in
figure 4, consisting of shaft, cam, roller, and spring.
Two heavy pulleys at each end of the shaft acted as fly-
wheels to render the speed uniform.

The tension nroduced by the vibration is largest at
the spring ends. Experience has shown that spring fail-
ures occur mostly in the outermost coil unless there 1s
gsome flaw in the material at some other point. Consider-
ations of strength and acceleration forces make it agdvisa-
ble to investigate the stress at a spring end and not just
any arbitrary deformation or velocity.

Measurement of the gpring pressure with carbon plate
indicators failed on account of the hysteresis effect.
(The calibration curve for rising pressure does not agree
with that for falling pressure.)

The compression of the last turn 1s a measure of the
stress at the spring end but it appeared too difficult to
convert this compression into & mirror rotation or elec-
tric current.
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The mngt promising method avpeared to be that of re-
cording the change in inclination of the wire axis. To
the outside turn was soldered a small knob and on it was
fixed the small oscillograph mirror. The test avparatus
with the spring in horizontal position was then set up
near the oscillograph in such a manner that the small mir-
ror lay in the position of the measuring loop. The re-
flected light ray described on the film drum the tension
of the spring end as a function of the time.

Figure 5 shows oscillograms ohtained by this method.
‘Resonance is set up, as we know, when the natural fre-
quency (or an integral multiple thereof) coincides with
an integral multiple of the cam speed. For any interme-
diate speed the amplitude remains small., The critical
speeds lie so near each other, however, that it seems
practicelly hopeless to determine the resonance speeds 1in
advance to a sufficient degree of accuracy so as not to
have the speced of the machine coincide with any critical
speed,

It may nevertheless be seen from the escillograms
(fig. 5) that the increase in the dynamic tension is not
equally large for each resonance condition and this justi-
fies the hope that it may be possible to avoild excessively
large dynamic stresses within certain speed ranges.

The test method just described likewise had to be
given up as not being sufficiently accurate. The testing
of the spring on a spring scale showed that the relatien
between the stress and the light beam displacement was not
linear, since the last turn lifts less and less as it is
compressed, There arise, morecvey, other disturbing ef-
fects due to the oscillation of the spring at right an-
gles to the spring axis, and the resulting deformations
are likewise recorded on the film and falsify the record
(fig. 5, 18 to 20 oscillations per rotation).

The author hed, meanwhile, for the purpnse of gener-

£l investigations on the Diesel engines, constructed a sys-

tem of three quarts indicators whereby three different
pressures could be synchronized and simultaneously record-
ed on z single oscillogram.

The first preliminary tests with this apparatus of
Kluge and Linckh (reference 4.) showed the promising possi-
tilities of application of radio amplifiers to the field
of pressure and force recording.



N.A.C.A., Techhical Memorandum No. 818 5

When pressure is applied to a crystal cut in a spe-
cial way, there arise on each surrace under pressure
‘electrical charges which charge a rotating condenser K
(figs 6) to a voltage which is proportional to the pres-
sure. An electrostatically operating amplifier must now
convert this voltage into a proportional current without
thereby drawing charge from the condenser. The first tube
of the amplifier therefore consists of an electrometer
with amber insulated leads to the grid. (The rotating
condenser of 1,000 centimeters capacity was likewise insu-.
lated against the ground by means of amber.) The tube op-
erates with an anode voltage of only six volts as this
voltage lies below the ionization voltage of the residual
gas in the tube so that no grid currents are set up as a
result of ionization currents. A separately heated output
tute is electrostatically coupled to the electrometer tube
(fig- 6).

In order that the lead from the guartz to the grid
mey not act as an antenna and assume too large and uncon-
trollable a capacity with respect to earth and thus re-
sult in high insulation losses, it must be kept very short,
i.ee, the amplifier must be set up near the crystal. A
bare copper wire a2bout 0.5 meter connects the center elec~
trode with the amplifier. It appeared that a static
shielding screen was unnecessary and might even prove harm-—
ful since, as a result of any fluctuations of the conduc-—
tor with respect to the screen, cespacity and voltage fluc-
tuations may be set up and these may falsify the pressure
oscillations on the oscillogram.

The second amplifier tube is somewhat sensitive to
vibrations, especially if a tube is chosen that can give a
linear characteristic with a 5 mA current, The metal
housing of the amplifier was therefore sunported on weak
springs and in this way the vibrations could be entirely
kept down,

In practical operation larger distances between am-
plifier and oscillograph are unavoidable. In order to be
able to use the amplifier simultaneously for observation
on a ground-glass plate, a central switch desk was lowered
on the oscillograph table and was connected with plug
sockets and a 9~-wire cable to the three amplifiers. In
the diagrams (fig. 6) are shown the three amplifiers above
and the switch desk below. The vertical lines to the
right represent the 9-wire connecting cable to which one
to three amplifiers can be connected.




6 N.A.C.A., Technical Memorandum ¥No. 818

-Before any measurements are made the amplifier is ad-
Justed so as to give linear readings. From the switch desk
are drawn together all the relays R which connect all the
grids with the potentiometer P;. With the peotentiometer

equal voltage intervals can be measvred and thus in a few
seconds the voltage sensitiviity and linearity may be
checkede If necessary, the closed circuit current ccmpen-
sator G may hte so adjusted that the linear portion of
the amplifier characteristic includes the entire oscillo-
gram width of 120 millimeters.

If the relays are again disconnected the light beam
indicator remains for some time in the same position; i,e.,
the ccndenser remains charged for some time with the po-
tential it finally received. Due to poor insulation, it
discharges within a few minutes. Periodie pressure curves
are therefore shifted in the directisn of the oscillogram
width until the mean pressure with respect to time coin-
cides with the zero vpoint of the condenser. The zero
voint cof the oscillogram must be adjusted according to the
form of the curve. For this purpose the potential of all
the cathodes may be varied ty means of the potentiometer
P, which, however, shifts the zero points of all three
curves simultaneously. To adjust the zero point of any one
curve it is necessary to connect an adjustable voltage
ahead of the grid between condenser and ground.

Before the oscillogram loop is connected in, the pro-
tective resistances 3 are disconnected in steps so that
the measuring coil of the oscillogram may not bte overload-
ed by an inaccurately compensated compensating current.

The snurce of current for the anode was a battery of
storage cells supplying 150 wvolts. It is also possible to
use a network connection provided the current is suffi-
ciently well smoothed out by filters. If more current is
suddenly drawn from the network the current cannct immedi-
ately adjust 1tself to a steady cenditinn due to the chok-
ing action of the filter, The current must therefore be
stabilized by means of a sufficiently large condenser.,
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THEORY OF WAVES IN VALVE SPRINGS

In the derivations given below, the following nota-
tionrwill be used:

h,,

ig the mean diameter of turn

polar moment of inertia
cross~sectional area of spring wire
diameter of round spring wire
number of active spring turns
length of gpring uncoiled

reduced mass of spring per centimeter wire
length =

Yo Y

<F+4E‘%>é=zﬂg
damping constant per centimeter of wire length
time variatle
1ift of a spring coil at distance x
distance from the fixed end of the. spring
specific weight of gpring
acceleration of gravity
torsional modulus of gpring steel
veloclty of spring coil
tension of sgspring
spring tejysion at 1ift h,
torsional moment corresponding to T
valve 1ift as function of cam angle

maximum valve 1lift
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Ty, time interval for a disturbtance to run up and
down the spring

ws, speed of propagation of an elastic disturbance
aleng the wire axis

w, angular velocity of cam
®, angular setting of cam
Weo, natural angular velocity of spring

The well-=known differential egquation for the elastic dis-
turtance of a spiral spring reads (reference 5):

3%y dy 3%y 4

=< 4+ k == = ¢ =% 1
3t2 3t 3x® (1)

The velccity with which an elastic disturbance without

damping 1s propagated along the spring wire is:

2
we = /2 =2 / J/a” G Z o _55 Sg (2)
" F o+ %g Y Fd® v

G
It may be noted that the value of ,/ 7% is identical

with the velocity of vpropagation of torsicnal disturbances
in smecoth rods.

Let = svring that extends to infinity in one direc-
tion have the cther end moved according to a definite law
of velocity. Velocity waves will be propagated along the
spring axis with the disturbance velccity. Together with
the velocity wave and unseparably connected with 1it, there
ig propagated a corresvonding stress distribution (tor-
sisnal stress). i

The following application of the principle of conser-—
vation of momentum shows how the velocity end stress de-

pend on each other: In the very short interval dt, the
velocity at the starting end of the spring is changed by
amount Av, for which a change in force AP 1s required.

This change in velocity has moved forward in the time 4t
the distance wg dt. By the principle of conservation of
momentum,
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AP dt = g wg dt AV
=AM _ s AV
ajz = B Vs

Substituting the values for p and wg there is ottained
an expression for the dynamical torsional moment

bMgyn = /IF %} Av (3)

The dynamical stress becomes for all cross sections

Tdyn = B e AV (33,)

where the nondimensional numerical coefficient B

depends
only on the form of the cross—sectional area.

For steel springs with round wire section

AT = 360 Av approximately (kg/cm®; m/s)

In a gun spring, for example, the initial stress de-
pends not on the spring dimensicng but on the initial ve-
locity at one end of the rebounding gun barrel, on the

form of cross—sectional area of the wire, and on the mate-
rial.

REFLECTION OF THE WAVES AT ENDS OF VALVE SPRING

For a spring of finite length, proportionality like-
wise obtains between the disturbing velocity change and
the stress wave. The total stress at any point of the

spring consigts, however, of the supervosition of all the
stress waves traveling up and back.

The reflection of a digturbance, consisting of the

velocity and stress waves, at a fixed wall occurs in the
follewing manner (fig. 77):

The condition of a fixed wall requires that the veloc-—
ity of the spring elements adjacent to the wall should be
zero at every instant. This condition may be satisfied by
superposing a moving symmetrical disturbance, as would be
obtained by mirrar reflection, on the original disturbance.
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(In fig. 7 the velocity waves are drawn symmetrical about a
voint (central symmetry), since the velocities when consid-
ered as scalars have reversed signs. The velocity vectors
are naturally also symmetrical about a line.)

On account of the central symmetry the velocity van-
ishes at the wall at each instant. The wave on the left
travels to the right and is not considered for any further
investigation. The wave on the right travels toward the
left, is similarly reflected at the disturbing end of the
spring, and so travels up and down several times.

The same phencmenon will occur when the other end of
the spring is simultanecusly disturbed. Both disturbances
would give rise to symmetrical waves of stress which would
te doutled at the wall 4.

Figure 7 shows the wave drawn shorter than the length
of the spring. Only two waves are therefore superposed.
Actually the disturbance producing the waves is very slow
compared to the velocity of propagation of the disturbance.
The valve opening time is very large compared with the pe-
riod T, that it takes a wave to run up and down the
spring. This fact does not in any way affect the process
of reflection bdbut makecs the superposition somewhat more
complicated.

The wave reflected at the fixed wall will now agailn
be reflected at thes disturbed spring end and after an in-
terval again arrive at the fixed wall. At the wall the
doubled stress waves zdd up after the interval T,, the
wave twice reflected after an interval ETO, the wave
three timeg reflected after an interval 3Ty, etc.

THE DYNAMICAL STRESS OF THE VALVE SPRING FOR

‘A SINGLE LIFT OF THE VALVE

From the discussion given above, the dynamic stress
at the fixed end of the spring is the resultant of the
stress waves reaching that end after equal intervals (after
each period T,), the stress doubling at each reflection.
If we denote the disturbing velocity function by vg, then
the total torsional moment at the fixed wall for a single
valve 1ift and for springs of any cross section is accord-
ing to equation (3):
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4

/ GY
Mayn = JF 3 (2vy + evi.p, * 2¥Vg.om, t EVEL3T, ceeen)

In order to obtain the simplest possible relations,
this equation will be converted into nondimensional form.
Since the cam angle @ equals wt, the foregoing equation
nay be written with indices ¢, o - wly, ¢ - 2wT,,

® - 3wT,, ¢ - 4wT,, etc.

Let the movable end of the spring move with 1ift h,
which 1s a function of . The velocity is then

dh
ao

VCD = Ww

and the above equation is transformed into

/ GY dh dh
M = JE — w |2 (== + 2 (== +
yn g [ 4% /e A% /p-w T
+ 2 (QQ\ ......1 (4)
dw/w—awTo 3
For a slow compression of the spring the torsional

moment of the spring according to the theory of strength
of materials is

= 2JG
M = T4 hO (5)

The difference in torsional stress between lower and upper
cam positions is therefore:

Mo = Tl—d-.— h (6)

The period of a vibration, which is also the time required
for a wave to run along the spring up and back, is

_ 21 _ /Ea? v
To = wg v J G

and the angular frequency of the fundamental vibration is

- 2m - 2m J Geg _ 236G -
Wa = 2T = T Y B = gdl - 7
° T T, T T JFee ¥ T 14 ".J TFeV (7)

By cembining equations (6) and (7)
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 Dividing equation (4) by equation (8)

Yayn - Tayn - o L O ( +
o) Ty 0
+ 2 <@L> + D (%2 + .. .]
AP/ To p-aw To
The ratio wo/w = z, which is the number of natural vibra-

tions per cam revolution, will te taken as a measure of
the time, We furthermore set

Ww TO = —2'21—1
so that we obtain:
szn ™ dh> /dh <
e = + == + 2 + e 9
To hoz [2 dP/y ° \Tp w- 21 - 220 (9)

The gstress =2t the moving end of the spring will then be

:
ldyn _ T f <___ + 2 (EE + 2 (4R + ....](10)
AP 21

o Bo? NP p 2T

The first wave does not enter doubled into equation (10)
since it has arisen from g velocity disturbance and not
by reflection.

Both curves representing equations (9) and (10) 4if-
fer from equation (5) only by the superposition of the
additional dynamic stress. After a time equal to the in-
terval of 1ift, functions 9 and 10 become periodic.

From the relationg derived above the result follows
that the magnitude of natural oscillation for a single
1ift of the valve depends only on the cam contour and the
natural frequency of the spring. The spring material and
dimensions affect only the natural spring frequency. The
computation of the dynamical stress is reduced to the addi-
tion of dh/dp curves shifted from each other by an equal
amount 2m/z. Magg in 1912 derived a similar though not

nondimensiocnal formula.
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MEASUREMENT OF THE dh/dw CURVE OF THE CAM TESTED

It is not advisable to obtain the dh/d@ curve by
graphical differentiation of a measured 1ift curve since,
as we know, the method of graphical differentigtion is very
inaccurate. The velocity curve, it is true, is generally
known from the cam computations from which the workshop
drawing has been made, but due to faults in workmanship
there are errors in using the cam pattern that may not be
neglected. It was therefore attempted to carry out the
differentiation experimentally on the test machine and the
attempt proved successful. : :

To one of the flywheels (fig. 4) of 370 millimeters
diemeter, a strip of paper divided into millimeter divi-
sions was glued on in the directicf of the perimeter, and
a permanent horseshoe magnet was mounted on it. A preci-
sion dial gage was fixed on the stand so that on turning
the flywheel "feeler of the dial gage was moved by the mag-
net. The center of the'"feeler was at a distance of 220
millimeters from the axig of rotation. The flywheel gas
now turned several times accurately *2,50 mm = *0,65
(5 dial gage revolutions). With & second instrument the
change in 1lift Ah which varied between O and 0.80 milli-
meter was determined. The measuring was repeated after
the magnet was shifted each time 5 mm = 1,55 along the
millimeter paper. The guotients Ah/Ap could be repre-
sented without any scattering by a smooth curve as a func-
tion of ¢ (fig. 8). The accuracy is equal to that of the
measurement of cthe change in 1ift since the change in the
angle of *0,65° corresponded to *¥250 graduation marks, so
that the error for Ap could be neglected in comparison
with the errors for Ah,

The positive and negative areas of the dh/&@ curve
deviated by only about 2 percent and gave the value of the
maximum 1ift taking the scale of the figure into account.
An attempt was next made to approximate the veloecity curve
(shown dotted in fig. 9) by a triangular-shaped curve
(fige 9). The supervosition of the triangles in accord-
ance with equation (9) yielded a curve with sharp angles
different from the corresponding oscillograms to be dig-
cussed later. If, however, the accurate curve is used,
there is obtained the dotted stress curve (¢ in fig. 9)
which is appreciably different,



14 N.A:C.A. Technical Memorandus No. 818

SIMULTANECUS RECORDING OF THE STRESS AT

BOQTH ENDS COF THE SPRING

A pair of quartz crystals was connected at each end of
the spring. (In viezo~electric measurements two-quartz
crystals are used, in general, so as to make the insula-
tion of only one electrode necessary (fig. 10)).- On one
side of the spring the force was transmitted to the crystal
through a guided coupling, since rather long springs would
otherwise easily buckle. A similar guide was also provided
at the moving end. The weight of the latter guide, how-—
ever, necessitated its acceleration so that the accelerat-
ing force was superposed on the spring force and for thls
reason the guide was dispensed with.

In order to test the Magg theory for the oscillations
of a spring during a single 1lift of the valve, the stress-—
es at both ends of the spring were cemputed according to
equations (9) and (10) for =z = 20 oscillations per rota-—
tion, and the same curves were cbtained with the oscillo-
graph (figs. 11 and 12).

The oscillogram was obtained for a single 1lift by
damping the resonance vibration of the spring through hand
contacte The first 1ift after the spring is released be-
haves, as is evident from figure 12, as a single 1lift,

The wave character of the escillations ig clearly
brought out by the computed curves together with the cor-
responding oscillograms. The initial rise in pressure is
linear like the velocity diagram and nct parabelic like
the 1ift, The pressure rise at the stationary end occurs
after a delay of half a vibration periocd; i.e., after the
disturbance has traveled from the moving to the fixed end.
Figure 12 shows the stress at each end of the spring for
the condition of resonance. It may be seen that 1t 1is
chiefly the first harmcnic that is excited. The harmon-
ics at the ends are shifted in phase by 180°., The natur-
al vibrations of odd corder 1, 3, 5, etc., produce pressures
at both ends of the spring having a phase shift of 180°,
whereas those of even order are in phase. The proof for
this is found in the following test:

Instead of leading the static electrical charges of
each pair of quartz crystals to each amplifier, the charges
were superposed and conducted to only one amplifier., The
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oscillogram thus obtained then represents the lnstantane-
ous sum or arithmetical mean of the forces at the spring
ends and the even orders therefore disappear from the os-

clliogram.

the pressure curve at the stationary end of

Actually,
corded were of the second order.,

Figure 14 shows,

for example,

taken for comparison on the same figure.

such a record
the 38 vibrations per rotation re-
Immediately thereafter,

the spring was

If the poles of one of the crystal pairs are inter-
changed and the charges at Both ends of. the springs added
the oscillogram will show -the difference in spring forces.
The difference includes,
The stress during the 1ift is no lenger shown on the os-
cillogram (fig.
Tirst order is seen and thig is built up again during the
lift interval.

15).

however,

SPRING OSCILLATICN DURING A SINGLE LIFT

AS A PUNCTION OF THE SFEED

only the odd orders.

€nly the decreasing vibration of the

In order to test the above theory of waves propagated
the dynamical stress of the spring was comput-
oscillaticns per rotation,

in springs,
ed for z =

one os01llat10n within this range lasts

12 to 23

from 15

Since
to

30°

the velocity curves must be added 2° apart in order to at—
that is,

the amounts by which the velocity curves are shifted from
each other and must be added are given in the following

tain sufficient accuracy.

table:

The shifts (3%60°/3z),

Wscillationsjz=12
rotation

13

14

15

16

17

18

19

20

21

22

23

Degree
shift,
exact 30

27,7

25,7

24

22,5

21.2

20

18.9

18

17.2

16.4

15,7

Degree
shift,
appProx-
imate 30

27.5

25.5

24

22.5

21.0

20

19

18

17.0

16.5

15.8%
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In order to simplify the computation, the accurate
values of the shirts were rounded off to integral or half-
integral values. The ordinates of the velocity curve which
was drawn to large scale were then tabulated for each half
degree, Table I, page 17, shows, for example, the compu-
tation procedure for =z = 20 oscillations per rotation.
The column heagded (dh/dcp)cp repeats 1tself in the remain-

ing columns each time with a shift of 18°. In the column
headed 2 dh/dm the previous columns were added, taking
into account the ceorrect sign and finally, in the last
column, they were multiplied by 180°/hoz X 2 Dby which
the values apveared in nondimensienal form Tdyn/To-

It may be seen from the table that after the first
1ift an oscillation between Tayn/To = 0.1%9 and -0.116
remains behind. Actually this amounts to *0.125. The de-
viation was caused by the inequality in the velocity areas
mentioned above. In the diagrams later given, the error
was corrected each time.

For practical purvoses the foregcing computation need
only partly be carried through. To compute the spring os-—
cillations, a knowledge of a complete oscillation period
at the lower position is reguired.

The computed curves for 2z = 12 to 23 are shown in
figure 17. TFor greater clearness the scales were omitted
since the distance between the center line of the top and
bottom stops always coerresponds to Tdyn/To = 1.

The same diagrams were obtained with the oscillograph
and are shown together in figure 16. In order that the
oscillograms may correspond to a single 1lift rescnance was
again set up as described above; the oscillation was damped
and the swinging recorded. The firgt 1ift after the damp-
ing is removed corresponds to a single 1ift. Computations
and tests were carried out for the stationary end of the
spring, and they agree to a sufficient degree of accuracy.*
The oscillograms confirm the method of Magg.

*Since the damping could not be removed suddenly and often
not accurately enough between two 1lifts, the jags on the
oscillograms are somewhat smaller.
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TABLE I ,

’ ' Z  1180° y sndh _

| (2 (@) [por " Faw

i a/ dep/

T _ laym
m= o icp18co36 ® 54 o 72{p 90| 108|p 126 To
deg. : % cm per deg.

0,0 ! 0 0
2 . Ju6d 46 .0k6
Y .92 .92 .092
¢ ¢ 1.38 1.38 .138
g . 1.85 1.85 .185
10 1 2,31 2.31 .231
12 ; 2.85 2.8% .285
14 | 3.38 3.38 .338
lo | 3.85 %.85 .385
18 [ 4.3140 4,31 431
20 | 4.92| .ub 5.38 .538
22 | 5.38 ] .92 £.30 .630
24 | 5.92 | 1.38 7.30 .730
2c | ©.00] 1.85 7.85 .785
28 | 5.85 | 2.31 g.16 .816
30 | 5.70| 2.85 8.55 -855
32 | 5.38 | 3.38 £.76 .876
34 | 5,001 3.85 8.85 . 885
3¢ | 4,61 431 O 8.92 .892
38 | 4.23 | 4.92| .ub 9.61 .961
B | 3.77 | 5.3%2] .92 10.07 1.007
Uo | 3,23 15.92f 1.38 10.53 1.053
Uy | 2.77 | 6.00| 1.85 10.62 1.062
46 | 2.31 ] 5.85) 2.31 10,47 1.047
48 | 1.77 | 5.70] 2.85 10,32 1.032
50 | 1.3115.38] 3.38 10,07 1.007
52 .85 | 5.00{ 3.85 9.70 .970
5l .38 | h.61| L.31) 0 9.30 .930
56 10 4.23] 4.92| .46 9.61 .961
58 | 0. 3.77) 5.38 .92 10.07 1.007
60 {0 3.23] 5.92( 1.3% 10.53 1.053
€2 |0 2.77{ ©6.00{ 1.85 10.62 1.062
64 o 2.31] 5.85| 2.31 10,47 1.047
66 |0 1.77| 5.70( 2.85 10.32 1.032
68 | 0 1.31] 5.38| 3.38 10.07 1.007
70 |0 .85 5.00| 3.85 9.70 .970
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TABLE I (Cont'd.)

- o 2 l180° dh -
dh\ (gg h,z xzadm
aw 1 \ar

m=1] o | 18| ¢ 36|00 54072 90lp 108 126 _ Tayn
=
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deg. % cm per deg,
7210 0.38| L.61 | L.31{0 9.30 0.930
o 0 b.23 | 4.92f .46 9.61 .961
76 | O 0 3.771 5.38] .92 10.07 1.007
78| 0 0 3.23 | 5.92]1.3¢ 10.53 1,053
80 | 0 0 2.77 1 ©.00/1.85 10.€2 1.062
g2 |~ .03] O 2.31 | 5.85/2.31 10.39 1,039
84 |~ 62| O 1.77 | 5.70/2.35 9.70 .970
8o {~1.15| O 1.31 ] 5.35[3.38 8.92 .892
8 |-1.69| 0 .85 ] 5.00]3.85 8.01 .801
90 {-2.23] O 35 L,6114,31]0 7.07 .707
92 |-2.A9| O 0 4.23|h.92; Ju46 6.92 .692
94 1-3.231 0 0 3.7715.38] .92 .84 .68Y
2 |-3.29] O 0 3.2315,9211.38 6.84 .684
98 [-4,07f{ © 0 2.7717.00|1.85 £.55 .655
100 |[-b.54{~ ,08( O 2.3115.85/2.31 5.85 .585
102 |-4,92{~ .€2| O 1.7715.70(2.85 4,78 .478
104 -5.23-1.15] 0 1.31)5.38{3.38 3.69 . 369
106 |-5.54|~1.69| O .85(5.00] 2.85 2.4y 247
108 | ~H.85|-2.23 0 324,614,310 1.22 122
110 |{-6.00{-2,69, O 0 4,2314.92! b6 .92 .092
112 |-5.59]-3.23| O 0 |3.77]5.38] .92 1.16 .116
114 |-5.38|-3.63| 0 0 3.2315.92| 1.38 1.46 146
116 | -4.92}-4.07} 0O 0 2.7716.00! 1.85 1.63 L163
118 |-kL.3g8|~k.54|- .08} O 2.31|5.85|2.31 1.47 .147
120 | ~-3.8%|-4.92]- 621 0 1.77{5.70| 2.85 .93 .093
122 }-3.38]-5.23(-1.15] 0 1.31}5.38| 3.38 .31 .031
124 | -2.92|-5.54{-1.69| 0 .85({5.00( 3.85 - .5 - .0b5
125 | ~2.381~5.85{-2.23| O .38 k,62{4.31 10 -1.16 - .116
128 |~1.92]-€.00{-2.69] O 0 4,23t 4.92 | 46 1-1.00 - .100
130 |-1.45{-5.69]-3.23} O 0 3.7715.38] .92 |- .31 - .031
132 |~1.00]-5.38|-%.69| 0 0 3.23]5.92{ 1.38 RIT .0ol5
134 |- .53|-4.92]-L, 07| O 0 2.77/ .00} 1.85 { 1.10 .110
136 |~ .08|-k4.38{-U, 54|~ ,08|0 2,31/ 5.85( 2.31 | 1.39 .139
138 { O -3.85|-4.92|~ .c2}0 1.77| 5.70 | 2.85 .93 .093
1o | O ~3.38|~5.23|-1.15|0 1.315.381 3.38 .31 .031
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COMPUTATION OF AMPLITUDE OF OSCILLATION FOR

A SINGLE LIFT BY HARMONIC ANALYSIS

The velocity may be represented by the following -
Fourier geries:

a, sin » + a; sin 20 + a; sin 3P ...

dh {
dep + b, cos @ + by cos 29 + by co5 3P ce.e..

The method of computation indicated by equations (9)
and (10) may be applied to each harmonic separately since
the partial results may be superpcsed for each harmonic.

The superposition of the first sine term according to
equation (9), namely:
2T

a; sin @ + aj; sin <@ —~ %?) + a; sin <w - 2 1{) +

+ .ooouoal Sin <Cp — [Z — 1] gg)

becomes zero as one may easlily convince oneself by drawing
a star—~shaped vector diagram. The =z <vectors form angles
of 2m/z with each other and balance out. The same holds
for the first cosine term.

i
The vectors az and bz form angles of 2 X 3= and
their vector sum likewise vanishes.

It will be found, finally, that the superposition of
the harmonics 1 to gz - 1; z + 1 to 2z - 1; 2z + 1 to
3z - 1, etc., cancel out and only the harmonices 1z, 2z, 3z,
4z, etc., add up to give the superposition sum, namely:

za, sin 20 + za,, sin 229 + za,, sin JzP + .., +

+ zb, cos 2¢p + zb,, cos 2z + zbzy cos I2P + ...

Substituting the above in eguation (9), we obtain the rela-
tion:

Tayn _ EE'{ az sin zp + agy sin 2z® + azy sin 3%P ...

+bz cos zop + b,y cos 2zP + b, cos 32 e.s

(11)
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[N

Equation (11) expresses the condition that the natural os-—
cillations of the spring are in resonance with the harmon-—
ics of the disturbing velocities and the coefficient of
the indices denotes the number of oscillation—-:loops. The
amplitude of the forced oscillation is proportional to the
exciting harmonic of the dh/dp curve.

In order to compare equation (11) with the previous
results, the veloeity curve of the test cam was developed
into a Fourier series according to the method of Runge and
with the aid of 72 ordinates. From the results of the exw-
ample (fig,_?), it follows that a smaller number of ordi-
nates would not be advisable. In the analysis, however,
the higher ordinates may be neglected and the forced os-
cillation after a single 1ift assumed to be a sine wave
to 2 first approximagtion.

The agreement between the "oscillation spectrum" ob-~
tained by each method is satisfactory (fig. 18). The ad-
dition of 2 curves shifted with respect to-each other by
360°/z 1leads to quicker results, however, than the har-
monic analysis. '

EFFECT OF CAM PROFILE

From equation (9), it follows that the contour of the
cam determines the magnitude of the oscillation ampli-
tudes.s An example of a sgimplified velocity curve shows
what points must be considered in order to reduce to possi-
bilities of spring surging. Interesting information igs ob-
tained when there ig first investigated the results of a
single 1lift by the cam, (dynamic compression of an elastic
column). For this investigation two velocity curves will
be employed - one consigting of an isosceles triangle, and
one of & half-sine wave. Instead of =z oscillations per
rotation, the relgation € = ‘I"/T0 will be introduced,
where T, denntes the natural period of the oscillation
of the first order, and T!' the interval of 1lift equal
to the base of the triangle or of the sine half-wave. At
the upper stop the spring remains in an oscillating con-
ditions The maximum amplitudes ATp,x are expressed as

a fraction of T, which is the stress corresponding to
the maximum 1if+t,.

For the triangular velocity curve the peaks of the
stresses are :
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AT ' - ! | .' - :

€ €

where for ¢

0 to 2, 2 to 4, 4 to 6, 6 to 8, etc.
m = 0 1 2 3

For the sgine Half—wave within short ranges, the following
formulag hold: ’

élgax = ar (13)

for € =0 to 1.5 a =1

1.5 to 2,5 a = 2 sin m $7%

2
2¢5 to 2.5 a =1+ 2 gin m %:%
3«5 to 4.5 a = 2 gin m %Z% + 2 gin m %:g
4,5 to 5.5 g = 1 + 2 gin ™ %zg + 2 gin %:g

Both formulas are graphbically given in figure 19 and were
obtained in the following way: The curves were graphic-
ally supervosed in accordance with equation (9). This
representation served only as an approximate indication

and for greater accuracy the addition was verformed analyt-
ically. A special formula was thus found for each region
between the tangent discontinuities in figure 19, The for-
mulas fcr all the subdivisions arranged in series showed a
certain regularity and from these, formulas (13) and (14)
were derived.,

There are, accordingly, certain ratios for T'/To
for which no - or only slight - oscillations are brought
about by the compression (zero point of the first kind).
If the upper portion of the time-velocity curve of the
spring end as i1t moves up, is symmetriczl with respect to
the center of the 1ift, and if the up and down motions.are
symmetrical, then the following characteristics appear:
The form and amplitude of the oscillation are congruent
for the up and down travel and differ by a phase shift
which depends on the time interval T" Ybetween up and
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down travel. The oscillations of the two halves of the
curve either add up or cancel each other according to the
phase shift (zero voint of the second kind). In order to
illustrate this behavior, a few oscillatidn diagrams are
shown on figure 20 for the triangular velccity curves with

T = 1,5 T', For z = 26.2 and 13.1 or T!/T, = 4 and 2,
no cscillations are set up at the upper travel and there-
fore also none at the lower, For =z = 218 and 2z = 17.5

there are some oscillationg after the up travel but these
disappear during the down travel. This case always occurs
when T" dig¢ an integral multiple of the natural vibration
period Tq.

The greatest amplitude within the range investigated
occurs at 2z = 19,6 where the phase difference is such
that the amplitude is doubled, The trisngular velocity
curve investigated coincides approximately with the curve
of figure 8. Since the latter is not accurately triangu-
lar, a condition of complete absence of oscillation could
not be ettained at z = 13.1, 17.5, and 21l.8.

It would seem natural to design a cam producing no os-—
cillations by combining, by harmonic analysis, the first
12 harmonics, This cam would produce absolutely no vibra-
tions for =z > 12, Tas stralght lines of the upper and
lower part of the cam would, however, according to this
synthesis have to be rcovlaced by a wave form of contour,
A more promising methed would be to use a range of z giv-
ing few oscillations; for example, z = 21,8 to 28.4 (com=
bination of a zero point of the first kind with twe zero
points of the second kind). It should be noted also that
the oscillation amplitudes for a sine half-wave are small-
er than thoge for a triangular wave.

The same zerc polints as in figure 19 appear when a
spring withcut mass to which a point mass is atftached at
the center is caused to vibrate. We are therefore justi-
fied in the assumption that a long spring with a guiding
pigton in the center would show the same zero voints as a
spring without a concentrated mass if the natural fre-
gquency f 1s computed according to the Dunkerley formula:

L= i+ L (14)

£28  fp@ g

fm 1s the natural frequency of the concentrated mass
attached to a spring assumed without mass.

fr 1s the natural frequency of spring without the
concentrated mass.
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THE SETTING UP OF RESONANCE

If a mass that is elastically supported is suddenly
acted on by a sine varying force having the same natural
frequency as the mass, the latter will be set vidbrating in
resonance and the amplitude will continually increase un-
til after a certain time a steady state is reached. A
spring behaves in the same way. When the shaft speed is a
multiple of the natural oscillation period there would be,
if there were no damping, an eqgual increment in the oscil-
lation amplitude for each 1ift. Due to internal friction
in the material and air friction the amplitude between the
lifts decreases. A steady state is reached when the loss
per rotation due to damping is equal to the amplitude for
a single 1lift,

The setting up of the resonance vibrations may be
mathematically considered in the following way:

The amplitude of the oscillation, as will later be
shown experimentally, decreases according to an exponen-
tial law, the ratio of two successive amplitudes being
constant

After one cam revolution, i.e., after =z oscilla-
tiong the amplitude ratio becomes '
é.r_l.i.g = aZ
An

The damped harmonic oscillation may be represented by
a vector whose end describes a logarithmic spiral. In the
case of resonance the vector, during one revolution of the
cam, rotates exactly =z times for every 260°. If the os-
cillation amplitude for a single 1ift is A4 (measured in
nondimensional units Tdyn/To) this is superposed on the

reduced amplitude of the previous 1lift A a®. The previ-

ous lifts contribute the amounts A o7, A a®?, A a%*?, etca,
and their sum amounts to

A (1 + o + aB% + 32 ,,,,) = ———5 = AR (15)




24 N.A.C.A. Teclinical Memorandum No. 818

tion the amplitude for a single stroke A must be multi-
plied by the resonance factor R = 1/1-aZ.

Figure 21 shows the resonance factor plotted for
z =5 to 50 and Ap/Ap+: = 1.005 to 1.10. The chart is

sufficient for all practical purposes.

Between two resonance positions - i.e., for =z =
a + 0.5 (a 1is an integer) the vhase difference of two
superposed vectors is not 260° as above but (a + 0.5) 380°.
Each vector therefore acts in opposition to the previous
one and the "intermediate resonance factor" becomes:

z 2z a2z pA -
A (1 - a® + « - a®?® + a%? L) = e

In figure 22 the spring vibration was computed for
z = 19, The spaces in between stand for the 1ift which
for simplicity was not indicated. After each stroke the
ogscillagtion receives the constant increment A until the
loss by damping becomes egual to A and the steady state
is reached. .

For 2z = a + 0,5, 1if there were no damping, the suc-
cessive rotations would alternately give amplitudes of 24
and zero. On gccount of the damping, this does not occur
but instead the condition shown on figure 22 for =z = 18,5.
According to the amount of the damping, a value between A
and A/2 is reached in the steady state. The same applies
to the bduilding up of the oscillations for z = a + 2/3;
for examnle, =z = 18-2/3, Figure 22 should be compared
with the corresponding oscilliograms, figure 23. Figure 24
shows the oscillograms for the resonance positions for
z = 12 to 228 and was obtained in the same manner as fig-
ures 16 and 17,

If the theoretically computed amplitudes for a sin-
gle 1ift (fig. 18) are multiplied by the resonance factor
obtained from figure 21, there are sbtained the theoret-
ical resonance amplitudes of figure 25, which are in sat-
isfactory agreement with the oscillographed amplitudes of
figure 24. The damping reguired to compute the resonance
factor was determined by the experiments to be described
later.
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FORCED SPRING OSCILLATION WITHE DAMPING

The general solution of the differential equation of
damped spring oscillation is, according to Hort (reference 6):

y = e~ DX [Ci sin (wt - ax) + Cz cos (wt -~ ax)] +
+ gtbx [Cz sin (wt + ax) + C4q4 cos (wt + ax)]

At the fixed end of the spring, let x =0 and y = 0,
whence we obtain: '

Gy = =Cg C = =0,

Let the end of the spring =x =1 be moved by an excentric
in accordance with the law

(y)x=.b = r sin wt

This end condition gives two more equations for determin-
ing the constants. Carrying out the computation, we ob-
tain for the damped and forced spring oscillation, the
following equation:

e"bx{[e"bz~ebljcos al sin(wt—ax)+[e"bl+eb1]sin al cos(wt~ax);}_
< p 7
e=2bl _ 2 cog 2 al + 2Pl

s

ebx{[e—bl~eb1]cos al sin(wt+ax)+[e“bz+ebh sin al cos(wt+ax)}
A rd
e=2dl - 2 cos 2 al + e?2DbV

-

(16)
From this equation, by neglecting the damping coef-
ficient b, there is obtained the simple relation which
was first given by Frohlich:
y =1 sin wt_sin_ ax (17)

sin al

The constants a and b may be determined by substi-
tuting a vart integral into the partial differential equa-

tion:
_ /1 e 2 2 2 n 2} 5
a _v/re{zv/h;; (8 w? + x%) + S w wa
_ /1 w2 a2 2y o2 l~ k& 1
v/ e e — ety D

(18)

l
W
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The changes in the spring force at the fixed end of the
spring are obtained by the partial differentigtion of
equation (16):

dy
(P)K=° = ax)x:o

Since we are interested only in the amplitude for the
case of rescnance we set in equation (16), as the condi-
tion for resonance, the approximation

al

The result of both operations gives: '

' roe 2 '
(P) = P = =+ sin (wt + V)
X=0 dyn Ws obl - =Dl

The force for very slow motion is equel to

Py = ¢ sin wt

z
1

and the ratio of amplitudesis

|Pa T 2 2
__X_I} = __d.'S_rE = _uf)_.. .L __________ = T —~———e———— 19
| Po To Wg  gbl-g=bl oDl . g=Dbl (19)
From equation (95 we obtain for a single sine motion of
the spring end (z =1, h = r) '
Tdyn
————— = T
To
The resonance factor (for 2z = 1)
1 1
R = = . —
1 égii>2 1 - fn+a
an an

is trensformed by the means of the relation:

opl =2 X X o X g g An

2 Wgq 2u An+i

into



",

a
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R _ l i _ eb.ll
1 - e=2bl  gbl _ o=bl

The approximate equation then reads:

Ta obl
yn
TO ebzl — e~b'l,

and differs from equation (19) only by the factor ePl

which, fer springs that are damped by the air resistance,
may be set equal to 1 to within a few percent, The dif-
ference consists in the neglecting of the damping during
the 1ift in the case of the approximate solution, -

FREE VIBRATION OF THE SPRING

The fundamental freguency for round steel springs is

computed by the formula

f = 358,000 -2z
. pal
where 8 ig the diameter of wire in millimeters
d, mean Cigmeter of coil in millimeters

P, number of coils

To test the accuracy of the calculation, the natural
frequencies of 10 springs of various dimensions were meas-
ureds The springs were set vibrating at their natural
frequencies and an oscillogram obtained for the steadily
diminishing vibraticens. By comparing with the accurately
calibrated sine line of the time~recording instrument, the
following natural frequencies were establighed:

& = 3 4 . 4.5 5.5 6 mm

d = 3 38 . 38 40 4C. mm

p = 9 12,5 . 9.5 9 4 turns
f measured = 104 85 114 141 348/sec.

f computed = 92 79 117 137 %35/ sec.
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8§ = 6 6 6.5 7 8 mm

A = 38 42 44 43 40 mm

p = 11 14 9 7 715 turns
f measured = 135 87 152 198 119/sec.
f computed = 135 87 133 194 119.5/ sec.

The deviations are such that any attempt to avoid
resonance by computation beforehand is unsuccessful. The
resonance speeds at a natural frequency of 6 OOO/mlnute,
for example, are:

200, 316, 333, 353, 375/minute

The critical speeds lie so near each other that resonance
is set up in the spring almost at any engine speed since
the free oscillations of identical springs deviate slight~
ly due to faults in manufacture. To avoid spring surges
it is therefore necessary to compute only the ranges with-
in which there occurs little vibration if there ig no pos-
sibility of obtaining sufficient damping.

THE DAMPING OF SPRING OSCILLATIONS

The general differential equation for damped spring
vibration according to equation (1) includes the following
solution for the free oscillation:

- k p=ce .
B _—
y = e < L {|4p sin wpt + By cos wypt | sin “~ x +
V=1 %
+ [Gu sin wpt + Dy cos wut] cos Bg x:}
J
a2
w
2 .2 k) - &

where Wy = J/; Wo - §E> Wo = 5~ ™

According to the mcde ef excitation, the dying-down
vibration may be considered as made up of standing waves
of various orders. The period changes very little with
the order. ZExample:
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Example. w, = 1200; . k/2p = 5

wl = 0.9292 wa; We = 1.000 wq

After a completed fundamental vibraticn, there is set
up. retween- the fundamental and a higher harmonic a phase
shift of at most 0.3°. The form of the curve therefore
changes little during the dying down of the oscillaticn as
Frohlich has shown in a simple experiment.

The form of the gsolution likewise shows, however, that
the amplitudes, and therefore alse the stresses at the
spring end, decrease at the same rate in the same time in-
terval for all orders according to the amount contrituted
Py the quctient k/Eu. The reduced mass per centimeter of
wire @ depends only on the wire diameter and on the spe-
cific weight, and k 1is a functicn only of the wire diama-
ter. It is therefere t5 bhe exvected that k/2u is like-
wvise dependent only on the wire diameter. - In order to test
this assumption, the damping of the oscéillograms which were
used to determine the fregquency was evaluated. In »btain-
ing the damped curves the sensitivity of the indicator was
so adjusted that the vibtrationg died down in the same man-
ner as those of spring vibratisns. The oscillegram of such
a vitration (fig. 26) reveals vibration phencmena of a type
that could not be entirely explained. It was at first
thought that they were vibrations transverse to the spring
axise Similar phentmena were revealed to a slighter extent
in the case of the other springs.

Figure 27 shcws the logarithms of the amplitudes plot-
ted against the oscillation number for several springs. A
straight line was drawn through the scattered points. (The
series of points forming a wave belongs to the oscillogram
(fig. 26).) The inclination of the straight lines deter-
mines the value o6f. the damping. The magnitude

vrlotted against the wire diameter (fig. 28) shows that the
former 1s affected by still another facter. It was par-
ticularly cbserved that in the case of four springs having
equal wire diameter and approximately equal diameter of
coils, the damping was smaller the longer the spring. The
values far the damplng were: ' :

Ne. of turns p =4 11 14 17 '}8'= 6: 4% 40 mm
- k/2p = 7.2 3.3 1,45 0,58
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This effect can only be explained as due to the addi-
tional damping at the end of the spring, which we may de-~
note as the loss due to reflection, and which is composed
of the following components:

l. Friction of the spring wire at the spring end.

2e Friction between the spring coils during the
unwinding of the last coil.

%e Digsipation of sound energy from the spring
end to the engine mass.

Thet reflection losses which cannot be taken into ac-
count by computation occur, could be confirmed by the fol~
lowing test:

The same spring (8 = 6; 4 = 40; p = 17) under
identical conditicens was successively supported on leather,
rubber, and "polyperite," and investigated for damping.

The suppecrts .consisted of rings of 5 millimeters thickness
and of the same inside and outside diameter as the spring.
The rings were inserted at each end between the spring and
the spring washer. Figure 29 shows the oscillograms ob-
tained, the initial amplitude being the same in each case.
(The softer the support, the grester the loss by reflec-
tion.) Consideratle demping may be attained by vpressing
sheet~metal tongues against the spring, and the damping
could bte adjusted by the amount of pressure applied. In
figure 30a, for example, the vibration dies down complete-~
ly during one rotation; 30b was obtained with the spring
in lubricating oil. With cylinder o0il no oscillations
could be observed between =z = 12 and 24. In order to ren-—
der the magnitude of the damping visible, the spring was
slackened to such an extent that it began to knock against
the follower and started a vibration (fig. 3Cc).

EFFECT OF INITIAL SPRING TENSION

In accordance with the theory develoved, the ampli-
tudes of the resonance vibrations should be independent of
the initial spring tension. Swan and Savage found, however,
an increase in the amplitude with increasing initial ten-
sicn. The a2uthor has, therefore, for =z = 20, <varied the
initial tension from the knocking spring condition until
the condition where the coils almost touched (fig. 31).
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" The average play between the turns.at the upper cam posi-
tion was.chosen as parameter (fig. Zlc). The natural vi-
brations increase somewhat with increasing initial tension
in agreement with the results of Swan and Savage, since
the spring becomes somewhat shorter by the compressiesn of
the spring end (fig. 31b).

At a play of 3 millimeters the roller begins to knock
and for this reason the spring is damped somewhat. As the
vlay becomes smaller the amplitude diminishes almost inep-
vreciably while there is a strecng decrease between 1 and
00’3 millimeter. The damping here increases because the
spring coils at the upper cam position teuch each other.

A shrill sound is emitted whereas for .a smaller initial
tension a deeper hum corresponding to the natural fregquen-
cy is heard.

EFFECT OF PLAY BETWEEN CAM AND FOLLOWER

Swan and Savage found a strong variation of the vi-
Pration frequencies with the amount of follower play.
This is to te expected since the velocity of the spring
end varies with the amount of play of the roller. Swan
and Savage increased the amount of the play up to 1.5 mil-
limeters for a 1ift of about 2 millimeters., In the pres-—
ent set—-up the 1ift was 18 millimeters, and for a play of
the roller of 0.8 millimeter, the knocking was so strong
that no increase in the play was possible. Within this
limiting value diagrams were obtained for four different
plays for a single 1lift and compared with the theoretical
one (z =20). The comparison shows that the amplitude
for a play of ¢ to 0.8 millimeter between cam and follower
does not appreciably vary (fig. 32).

When the vibrations are few, for example, z = 17,
the conditions are different., In this case a certain ve-
locity is suddenly set up at the beginning and end of the
velocity curve where a small triangle is cut offs With
these triangles superposed according to equation (9),
there ig obtained an oscillation diagram showing a large
number of sharp points (fig. 33). There was no agreement,
however, with the oscillogram since the shocks due to the
strokes were transmitted to the quartz crystal and cov-
ered up the details on the oscillogram.



.32 N.A.C.A. Technical Memorandum No. 818

Assuming the camshaft to be accelerated to a con-
stant rotational velocity before the first 1lift stroke
. tegins, then at the start of the first stroke the tensisn
" increases linearly with the velocity of the spring end up
to the return of the disturbance which is reflected at
the fixed end of the spring. The succeeding stresses are
the result of the superposition of all the disturbance
waves that run up and back and oscillate about a mean line
‘that increases linearly with the 1ift.

After the first 1ift there remainsg behind an oscilla-
tion which, for example, for 10 natural vibrations per ro-
tation, contains the 10th, 20th, 30th, etc. harmonics of
the velocity curve. The amplitude of the vibration is
more easily computed with the aid of superposition than by
mesrns of harmonic analysis. The magnitude of the vibra-
tion excited after the first l1ift as a2 function of the
number of vibrations per turn indicates to the designer in
what range of engine speeds particularly large resonance
frequencies are set up. It is shown by means of an exam-—
ple how a sufficiently large range of rotational speeds
may be obtained within which little vibrgtion occurs.

If the natural frequency is an exact multiple of the
cam speed the vibration amplitude will increase by the
same amount after each stroke. A4s a result of the damping,
however, a steady state will be reached as soocn as the in-
crease per rotation has become equal to the loss by damp-
inge In a set of curves a resonance factor is given by
which the computed amplitude of the first 1ift must be
multiplied in order to obtain the final steady amplitwde.
This resonance factor changes with the amount of the damp-
ing and with the number of oscillatiens per rotation.

The damping depends not only on the air resistance
and on the interngl friction of the material but also on
the manner in which the spring is supported (loss by re-
flection). In lubricating oil the damping is so large
that the vibrations die down before the next 1ift stroke.

The phenomena described were confirmed by numerous
tests with cams and springs. Oscillograph measurements of
the forces at the spring ends show satisfactory agreement
with the curves computed beforehand.

The present work was éarried out at spare intervals
ot the physics laboratory of the firm of Sulzer Brothers,
Winterthur. The firm kindly placed at my disposal the
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spring test apparatus, the Siemens Universal oscillo-
graphs, and the guartsz indlcators, for which I here take
‘the opportunity to express my sincere thanks.

I wish to thank Professor Eichelberg, who submitted
my report, for the kind interest he has shown throughout
my investigations.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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Mgure 1.~ Multiple:
reflection
of a disturbance at

a spring.
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p—
302 308 314 321 328 335 343 352
25 24.5 24 23,5 23 225 22 21.5
360 368 377 387 397 408 419 430
21 20,5 20 19,5 19 18.5 18 17.5

Figare 5.- Resonance frequencies of spring with
natural frequeacy of 7540/min,

Nos. 260 to 430 indicated. rotations per minute,

Nos. 29 to 17.5 indicate number of free '

oscillations per rotation.

Figs.1,3,3,4,5

Figure 4.- Section
through

the test apparatus,

a = test spring.

Figure 2.~ Sketch  TFigure 3.- Motion +————

. showing of the
recording of center spring
vibration by means coil obtained with
of a dridge. the apparatus of

fig.2.
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Figure 6.~ Scheme of connections of streases
of amplifier, of fig.1ll1.
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Mgure 9.~ Stress variation for a
single 1ift for g =16.4.
&, Curve to replace ithe sxact '
dh/d¢ curve.
b, 8tress computed from curve e,
¢, Stress computed from exact curve,

Mgure 10.- Section through spring
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a, rigid support.

d b, quartz crystal.
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Figure 7.- Reflection of disturbance at a fixed wall.

a = stress. c = moving end of spring.
b = velocity. d = raeflecting wall.
.10
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figure 18.~ Amplitude of harmonics computel from the
wave thenry and compared with the results
uf harmonic analysis.
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Figure 19.~ Oscillations after épring is compressed, then
rileased. a = with triangular form of velocity
curvc. b = with velscity curve in form of half sine wave.
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Figure 14.- a, proof of the existence of the second (more accurately
even) harmonics by adding electrically the forces at the

: spring ends,

b, comparison with the forces at the ltatlonn.ry end (s = 19).

Both curves were obtained one directly after the other. )

Tigure 13.- Spring stresses at
both ends of the

spring synchronously recorded

(= = 20).

&, stationary end.

b, moving end.

I

S

—a b +—a o
l‘uuro 15.- m.tforonc- of end
pressures
&, bullding up again of ’
damped oscillations during Figure 16.- Figure 17.-
the 1ift stroks. _ - Oagﬁlocriinl Same '
b, dying down during down for single curves

motion of the cam. 111t computed.
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Figurs 20.- Computed stress
: curves for a
S _T/r, 7[7, trisngular velocity curve.
z= 28,4 - ’ R

4/, 67,

27.3 4, 6,

26,2 4 6

2541 3/ 5,

24,0 3¢, 5%, 1.

22.9 ¥, 5, -

28 8, 5

207 3y 5,

19.6 3 57,

18.6 .25/0 5!/,

17,5 2, 4

16,4 2, Y,

153 2z, 3, | 3.

14,2 ! 2y, 3,

134 2 3

12 2%,

109 ", 2, .
* I Figure 23.- Bulilding up spring
20 ] W vidbrations,

e AEREE _ obtained with oscillograph.
N T Nos. 1 and 2: g = 19
= o = 3: ¢ =18 2/3
=== 4: z =18 1/2
=== 02 =
4 ~] i S S
3 %\‘\ \\\ \%l?:\\ : ~]
2 \\\ o ‘\\' \’\
L T =s
T T T T TTI110

‘8§ 7 8 910 b 20 2 30 35 40 45 50

Tigure 21.- Resonance factor for
different numbers of v 2 3 & 7,

8, 8 i
- ~el el S Pl P
oscillations per rotation. R e ] 2 I
et T A L N AR O
- N T A T O O A T T B B
L PR R R RS N S R P
= U Sl P P P P P
. : i B N i I o {----‘. i'-'“ﬁ -
HR J IV J St WU R SO I eeed Locad T LT
Figure 22.- Building up spring 7.,
= s W ttmne S e S Yoo S Mg | poeeem [ ~-
vidrations after | JooniTipen eyt

the first 1ift (computed). ST



¥.A.C.A. Technicel Memorandum No. 818 Tigs. 24,85,36,37,28,30

03 V.| g .
T. Computed
02
ol |
(el
Z-Iﬂs %1817 nl'mﬂﬂ”

AT e
hd i A Oscillo graph

: Wl

['}}

I=1213 4% 17181020212228

W ‘ e '9-:,.?::"::::,:3‘::3':.::1?&:.‘ |
/\MZ Do
Vi

Figure 26.~- Dying down of spring vidration.
15 '

14 2u
Pigure 24.-~ 5

13 Oscillograms
for

1o TOsODANCS
conditions,

v W p
+

-

01234566789 mm

Figure 28.~ Damping of tested springs

as fanctions of wire diameter.

d d p
7 437

4.5 38 95

65449

3 369
6 38 1

0o}
08 \
Hog A 6 40 4
5540 9
20 40 60 80 100 ' ' Mgure 30.- Spring vidbration
.~ Mgure 37.- Grephicel dstermi- : with strong
nation of damping. - damping.




N.A.C.A, Technical Memorandum No. 818

!

.- Effect of ylelding supports

on damping,
&, without any support.
b, polyperite ring.

0.6

c, leather ring.
4, rubber ring.

0,8

FMgurs 32.- Comparison of computed spring
forces with oscillograms with

play of roller vu'ying between O and

0.8 mmn. (g =

~ Pige. 29,31,33,33
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Figure 33.~ Increass of
oscillation
amplitude due to play
of roller;
a, without play.
b, with 0.8 mm. play
(z = 17).
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